Amphidinolide T, Novel 19-Membered Macrolide from Marine Dinoflagellate *Amphidinium* sp.

Masashi Tsuda, Tetsuya Endo, and Jun'ichi Kobayashi*

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

Received September 2, 1999

A novel 19-membered macrolide, amphidinolide T (1), has been isolated from a marine dinoflagellate *Amphidinium* sp., and the structure was elucidated on the basis of spectroscopic data. Relative stereochemistry at C-7, C-8, and C-10 was deduced from the NOESY correlations, while absolute configurations at C-2, C-13, C-14, and C-18 were assigned on the basis of NMR data of the MTPA esters of 1 and those of degradation products of 1.

Introduction

Marine dinoflagellates of the genus *Amphidinium* have been recognized as a source of novel secondary metabolites with unique structures.^{1–5} In our continuing search for bioactive metabolites from Okinawan marine organisms,^{6–8} we have investigated extracts of laboratorycultured marine dinoflagellates *Amphidinium* sp., which were symbionts of the Okinawan marine acoel flatworms *Amphiscolops* sp., and isolated a series of cytotoxic macrolides, amphidinolides, with various backbone skeletons.⁹ Here we describe the isolation and structure elucidation of a novel 19-membered macrolide, amphidinolide T (**1**), which was isolated from extracts of a strain (Y-56) of the dinoflagellate *Amphidinium* sp.

Results and Discussion

The dinoflagellate *Amphidinium* sp. was separated from a flatworm *Amphiscolops* sp., which was collected off Zanpa, Okinawa, and mass cultured unialgally at 25 °C for 2 weeks in a seawater medium enriched with 1% ES supplement.¹⁰ The harvested algal cells (420 g, wet

Stereochemistry at C-7, C-8, and C-10 is relative

weight, from 580 L of culture) were extracted with MeOH/toluene (3:1), and the extracts were partitioned between toluene and water. The toluene-soluble materials were subjected to a silica gel column (CHCl₃/MeOH) and a Sep-Pak C₁₈ cartridge (MeOH/H₂O) followed by C₁₈ HPLC (CH₃CN/H₂O) to afford amphidinolide T (1, 0.005%, wet weight).

Amphidinolide T (1) had the molecular formula of $C_{25}H_{42}O_5$ as revealed by HRFABMS [*m*/*z* 423.3107 (M + H)⁺, Δ –0.4 mmu]. IR absorptions at 3490 and 1720 cm⁻¹ indicated the presence of hydroxyl(s) and carbonyl group-(s), respectively. ¹H and ¹³C NMR data (Table 1) disclosed the presence of a ketone, an ester carbonyl, an exomethylene, seven sp³ methines, four of which were oxygen-bearing, 10 methylenes, and four methyl groups. Since three out of five unsaturations were accounted for, amphidinolide T (1) was inferred to contain two rings. Interpretation of the ¹H-¹H COSY and TOCSY spectra revealed proton connectivities of the following units: (a) from H₃-22 to H₂-11 and H₃-23, (**b**) from 13-OH to H₂-15 and H_3 -24, and (c) from H_2 -17 to H_3 -21 (Figure 1). Connections among units $\mathbf{a} - \mathbf{c}$ and remaining three carbons (C-1, C-12, and C-16) were assigned on the basis of ¹H-¹³C long-range correlations observed in the HMBC spectrum as follows. HMBC correlations from H₂-11 ($\delta_{\rm H}$ 2.50 and 1.95) and H-13 ($\delta_{\rm H}$ 4.34) to the ketone carbonyl at $\delta_{\rm C}$ 212.0 (C-12) suggested the connectivity between units **a** and **b** through C-12. The connection between units **b** and **c** through an *exo*-methylene at C-16 was deduced from HMBC correlations from one proton ($\delta_{\rm H}$ 5.17) of H₂-25 to C-16 (δ_C 143.5) and C-17 (δ_C 40.1) and

^{(1) (}a) Ishibashi, M.; Takahashi, M.; Kobayashi, J. Tetrahedron 1997, 53, 7827–7832. (b) Kobayashi, J.; Takahashi, M.; Ishibashi, M. Tetrahedron Lett. 1996, 37, 1449–1450. (c) Doi, Y.; Ishibashi, M.; Yamaguchi, N.; Kobayashi, J. J. Nat. Prod. 1995, 58, 1097–1099 and references therein.

^{(2) (}a) Doi, Y.; Ishibashi, M.; Nakamichi, H.; Kosaka, T.; Ishikawa, T.; Kobayashi, J. *J. Org. Chem.* **1997**, *62*, 3820–3823. (b) Kubota, T.; Tsuda, M.; Doi, Y.; Takahashi, A.; Nakamichi, H.; Ishibashi, M.; Fukushi, E.; Kawabata, J.; Kobayashi, J. *Tetrahedron* **1998**, *54*, 14455–14464.

⁽³⁾ Kobayashi, J.; Kubota, T.; Takahashi, M.; Ishibashi, M.; Tsuda,
M.; Naoki, H. *J. Org. Chem.* **1999**, *64*, 1478–1482.
(4) (a) Satake, M.; Murata, M.; Yasumoto, T.; Fujita, T.; Naoki, H.

^{(4) (}a) Satake, M.; Murata, M.; Yasumoto, T.; Fujita, T.; Naoki, H. J. Am. Chem. Soc. **1991**, 113, 9859–9861. (b) Paul, G. K.; Matsumori,

N.; Murata, M.; Tachibana, K. Tetrahedron Lett. 1995, 36, 6279-6282.

⁽c) Paul, G. K.; Matsumori, N.; Konoki, K.; Murata, M.; Tachibana, K. *J. Mar. Biotechnol.* **1997**, *5*, 124–128.

^{(5) (}a) Bauer, I.; Maranda, L.; Shimizu, Y.; Peterson, R. W.; Cornell, L.; Steiner, J. R.; Clardy, J. *J. Am. Chem. Soc.* **1994**, *116*, 2657–2658.
(b) Bauer, I.; Maranda, L.; Young, K. A.; Shimizu, Y.; Fairchild, C.; Cornell, L.; MacBeth, J.; Hung, S. *J. Org. Chem.* **1995**, *60*, 1084–1086.
(c) Bauer, I.; Maranda, L.; Young, K. A.; Shimizu, Y.; Haung, S. *Tetrahedron Lett.* **1995**, *36*, 991–994.

⁽⁶⁾ Tsuda, M.; Hirano, K.; Kubota, T.; Kobayashi, J. Tetrahedron Lett. 1999, 40, 4819-4820.

⁽⁷⁾ Tsuda, M.; Uemoto, H.; Kobayashi, J. Tetrahedron Lett. 1999, 40, 5709-5712.

⁽⁸⁾ Sato, H.; Tsuda, M.; Watanabe, K.; Kobayashi, J. Tetrahedron 1998, 54, 8687-8690.

^{(9) (}a) Kobayashi, J.; Ishibashi, M. Chem. Rev. 1993, 93, 1753–1769.
(b) Ishibashi, M.; Kobayashi, J. Heterocycles 1997, 44, 543–572.

⁽¹⁰⁾ Provasoli, L. In *Culture and Collection of Algae*; Watanabe, A., Hattori, Eds.; Japanease Society of Plant Physiology: Tokyo, 1968; pp 63–75.

Figure 1. Selected 2D NMR correlations for amphidinolide T (1).

Table 1. ¹H and ¹³C NMR Data of Amphidinolide T (1) in C_6D_6 .

		1	
position (H)	$\delta_{\rm C}$	$\delta_{ m H}$ (m, Hz)	HMBC (H) ^c
1	174.9 s		4b, 22
2	41.7 d	2.49 m	3a, 22
3	35.1 t	1.62 m 1.29 m	2, 5, 22
4	26.8 t	1.55 m 1.18 m	3a, 6
5	26.2 t	1.53 m 1.34 m	4a, 6b
6	29.7 t	1.47 m 1.10 m	4, 5
7	78.6 d	3.69 ddd, 2.6, 4.1, 10.7	6, 9, 10, 23
8	36.5 d	1.73 m	23
9	39.7 t	1.36 ^{<i>a</i>} m	11, 23
10	73.6 d	4.53 m	11
11	45.0 t	2.50 dd, 9.2, 14.2	9
		1.95 dd, 2.7, 14.2	
12	212.0 s		10, 11, 13
13	78.2 d	4.34 d, 5.5	14. 15. 24
13-OH		3.64 d, 5.5	
14	32.0 d	2.47 m	13, 15, 24
15	41.2 t	2.57 dd, 10.3, 13.5	14, 24, 25b
16	143.5 s	2.34 m	15, 17, 25
17	40.1 t	2.33 ^a m	25a
18	71.7 d	5.38 m	17, 19
19	35.7 t	1.58 m 1.44 m	20, 21
20	19.1 t	1.35 m 1.32 m	19, 21
21	13.9 q	0.91 ^b t, 7.3	20
22	18.0 q	1.12 ^{<i>b</i>} d, 6.9	
23	14.0 q	0.67 ^{<i>b</i>} d, 7.1	7
24	13.7 q	0.97 ^b d, 6.6	13, 15a
25	116.1 t	5.17 s 4.96 s	15, 17

 a 2H. b 3H. c a and b denote low-field and high-field resonances, respectively, of a geminal pair.

from another proton ($\delta_{\rm H}$ 4.96) of H₂-25 to C-15 ($\delta_{\rm C}$ 41.2) and C-16. The HMBC correlation from H-10 ($\delta_{\rm H}$ 4.53) to C-7 ($\delta_{\rm C}$ 78.6) revealed that an ether linkage was present between C-7 and C-10, thereby constructing a tetrahydrofuran ring. The presence of an ester carbonyl at C-1 was implied by C–H long-range correlations from H₃-22 ($\delta_{\rm H}$ 1.12) and H-3 ($\delta_{\rm H}$ 1.29) to C-1 ($\delta_{\rm C}$ 174.9). The relatively lower-field resonance of H-18 ($\delta_{\rm H}$ 5.38) indicated that C-18 was involved in an ester linkage with C-1. Thus the gross structure of amphidinolide T was elucidated to be **1**.

Relative stereochemistry of three methine protons (H-7, H-8, and H-10) in the tetrahydrofuran ring was suggested to be 7,8-*syn* and 7,10-*anti*, since NOESY correlations were observed for H₂-6/H₃-23, H-7/H-11a, and H-10/H₃-23 (Figure 2). Absolute configuration at C-13 was assigned as S on the basis of modified Mosher's

Figure 2. Relative stereochemistry of tetrahydrofuran ring in amphidinolide T (1)

Figure 3. $\Delta \delta$ Values [$\Delta \delta$ (in ppm) = $\delta_S - \delta_R$] obtained for (*S*)- and (*R*)-MTPA esters (**2a** and **2b**, respectively) of amphidinolide T (**1**).

method¹¹ using the (S)- or (R)-MTPA (2-methoxy-2trifluoromethyl-2-phenylacetic acid) esters (2a and 2b, respectively) of 1 (Figure 3). Absolute configurations at C-2, C-14, and C-18 were investigated by NMR data of degradation products of 1 as follows. Reduction of 1 with LiAlH₄, oxidation with NaIO₄, reduction with NaBH₄, esterification with (R)- or (S)-MTPACl, and then HPLC separation furnished the bis-(S)- or (R)-MTPA esters of C-1-C-12 (3a and 3b, respectively) and C-13-C-21 segments (4a and 4b, respectively) (Scheme 1). Absolute stereochemistry of C-18 was assigned as R by modified Mosher's method based on ¹H NMR data of 4a and 4b (Figure 4). Absolute configurations at C-2 and C-14 with a methyl group were elucidated on the basis of chemical shift differences and signal patterns of two geminal protons¹² at C-1 of **3a** and **3b** and C-13 of **4a** and **4b**, respectively. The methylene protons of C-1 for 3a appeared as separated double doublet signals at $\delta_{\rm H}$ 4.06 and 4.23 (Figure 5), while those for **3b** were observed as overlapped 2H signal at $\delta_{\rm H}$ 4.15, indicating that absolute configuration at C-2 was S. On the other hand, the chemical shift differences (Figure 6) of H₂-13 for 4a ($\Delta \delta$

⁽¹¹⁾ Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. **1991**, 113, 4092–4095.

Figure 4. $\Delta \delta$ Values [$\Delta \delta$ (in ppm) = $\delta_S - \delta_R$] obtained for (*S*)- and (*R*)-MTPA esters (**4a** and **4b**, respectively) of C-13–C-21 segment.

Figure 5. Proton signal patterns of H_2 -1 of bis-(*S*)- and bis-(*R*)-MTPA esters (**3a** and **3b**, respectively) of C-1-C-12 segment.

Figure 6. Proton signal patterns of H_2 -13 of bis-(*S*)- and bis-(*R*)-MTPA esters (**4a** and **4b**, respectively) of C-13-C-21 segment.

0.03; $\delta_{\rm H}$ 4.09 and 4.12) and **4b** ($\Delta\delta$ 0.23; $\delta_{\rm H}$ 4.03 and 4.26) suggested the 14*R*-configuration. Thus the stereostructure of amphidinolide T was concluded to be **1**.

Amphidinolide T (1) is a novel 19-membered macrolide possessing a tetrahydrofuran ring, one *exo*-methylene, three branched methyls, one ketone, and one hydroxyl group. It is known that more than a half of amphidinolides isolated so far have unique structural features such as an odd-numbered macrocyclic lactone ring and/or vicinally located one-carbon branches. Amphidinolide T (1) possesses an odd-numbered macrocyclic lactone ring but has no vicinally located one-carbon branches. The C₂₁ backbone with four C₁ branches (C-2, C-8, C-14, and C-16) of **1** are different from the carbon frameworks of two other 19-membered macrolides, amphidinolides E¹³ and K,¹⁴ which have a C₂₆ backbone with four C₁ branches (C-2, C-19, C-21, and C-25) and a C₂₂ backbone with five C₁ branches (C-2, C-4, C-6, C-7, and C-14), respectively. Biosynthetic studies of amphidinolides J,¹⁵ G, and H¹⁶ suggest that amphidinolide T (**1**) might be also generated from mixed polyketide chains consisting of successive polyketide chains and unusual carbon units derived from C-2 of acetates. Amphidinolide T (**1**) exhibited cytotoxicity against murine leukemia L1210 cells in vitro with IC₅₀ value of 18 μ g/mL.

Experimental Section

General Methods. ¹H and 2D NMR spectra were recorded on a 600 MHz spectrometer, and ¹³C NMR spectra were measured on a 500 MHz spectrometer. NMR spectra of all MTPA esters were measured using 5 mm symmetrical thinwall micro sample tubes for CDCl₃ (Shigemi Co. Ltd.). FABMS spectra were recorded using *p*-nitrobenzyl alcohol as a matrix in positive mode. Cytotoxic activity was examined by the same method as described previously.¹⁷

Cultivation and Isolation. The dinoflagellate Amphidinium sp. (strain number Y-56) was isolated from the inside cells of the marine acoel flatworm Amphiscolops sp. collected off Zanpa, Okinawa. The dinoflagellate was unialgally cultured at 25 °C for 2 weeks in a seawater medium enriched with 1% ES supplement. The harvested cells of the cultured dinoflagellate (420 g, wet weight, from 580 L of culture) were extracted with MeOH/toluene (3:1, 3 L \times 3). After the addition of 1 M aqueous NaCl (1 L), the mixture was extracted with toluene $(4 L \times 3)$. The toluene-soluble fraction was evaporated under reduced pressure to give a residue (3.67 g), which was partially (2.67 g) subjected to a silica gel column (CHCl₃/MeOH, 98:2) and a Sep-Pak C₁₈ cartridge (MeOH/H₂O, 8:2) followed by C₁₈ HPLC [LUNA C18(2), 5 μ m, Phenomenex, 10 mm \times 250 mm; eluent, CH₃CN/H₂O, 85:15; flow rate, 2.5 mL/min; UV detection at 210 nm] to afford amphidinolide T (1, 0.005%, wet weight, t_R 24.4 min).

Amphidinolide T (1): colorless oil; $[\alpha]^{24}_{D}$ +18° (*c* 0.3, CHCl₃); IR (KBr) ν_{max} 3490, 2935, and 1720 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 423 (M + H)⁺ and 445 (M + Na)⁺; HRFABMS *m*/*z* 423.3107 [calcd for C₂₅H₄₃O₅ (M + H)⁺, 423.3111].

(S)-MTPA Ester (2a) of Amphidinolide T (1). To a CH_2Cl_2 solution (100 μ L) of amphidinolide T (1, 1.0 mg) was added 4-(dimethylamino)pyridine (0.1 mg), triethylamine (20 μ L), and (*R*)-(–)-MTPACI (2.5 μ L) at room temperature, and stirring was continued for 2 h. After addition of N,N-dimethyl-1,3-propanediamine (10 $\mu L)$ and evaporation of solvent, the residue was passed through a silica gel column (hexane/EtOAc, 4:1) to afford the (S)-MTPA ester (2a, 0.6 mg) of 1. 2a: colorless oil; ¹H NMR (CDCl₃) δ 0.85 (3H, d, J = 7.0 Hz, H₃-23), 0.89 (3H, t, J = 7.3 Hz, H₃-21), 0.92 (3H, d, J = 6.6 Hz, H₃-24), 1.15 (3H, d, J = 7.0 Hz, H₃-22), 1.15-1.55 (12 H), 1.79 (1H, m, H-9), 1.82 (1H, m, H-9), 2.02 (1H, dd, 10.3 and 13.5 Hz, H-15), 2.15 (1H, m, H-8), 2.28 (1H, dd, J = 3.5 and 13.5 Hz, H-15), 2.33 (2H, m, H₂-17), 2.41 (1H, brd, J = 14.2 Hz, H-11), 2.45 (1H, m, H-2), 2.46 (1H, m, H-14), 2.61 (1H, dd, J = 9.2 and 14.2 Hz, H-11), 3.63 (3H, s, OCH₃), 3.91 (1H, m, H-7), 4.64 (1H, H-10), 4.64 (1H, s, H-25), 4.84 (1H, s, H-25), 5.07 (1H, brs, H-13), 5.18 (1H, m, H-18), 7.43 (3H, m), and 7.77 (2H, m); FABMS m/z 639 (M + H)+; HRFABMS m/z 639.3512 [calcd for $C_{35}H_{49}O_7F_3$ (M + H)⁺, 639.3508].

(*R*)-MTPA Ester (2b) of Amphidinolide T (1). Amphidinolide T (1, 1.0 mg) was treated with (*S*)-(+)-MTPACl (2.5 μ L) by the same procedure as described above to afford the (*R*)-MTPA ester (2b, 0.9 mg) of 1. 2b: a colorless oil; ¹H NMR (CDCl₃) δ 0.83 (3H, d, J = 7.0 Hz, H₃-23), 0.89 (3H, t, J = 7.3 Hz, H₃-21), 0.92 (3H, d, J = 6.6 Hz, H₃-24), 1.15 (3H, d, J =

⁽¹²⁾ Mosher's method has been applied to determine the absolute stereochemistry of a methyl group at C-25 of steroids with a primary hydroxy group at C-26. In the ¹H NMR spectra of the (+)-(*R*)-MTPA esters, two 26-methylene protons of the 25*S* isomer are much closer ($\Delta \delta$ ca. 0.04) to each other than those ($\Delta \delta$ ca. 0.14) of the 25*R* isomer, whereas in the (-)-(*S*)-MTPA esters, the mutual relation is the reverse. (a) De Riccardis, F.; Minale, L.; Riccio, R.; Giovannitti, B.; Iorizzi, M.; Debitus, C. *Gazz. Chim. Ital.* **1993**, *123*, 79–86. (b) Finamore, E.; Minale, L.; Riccio, R.; Ciolo, F. *J. Org. Chem.* **1991**, *56*, 1146–1153.

⁽¹³⁾ Kobayashi, J.; Ishibashi, M.; Murayama, T.; Takamatsu, M.; Iwamura, M.; Ohizumi, Y.; Sasaki, T. *J. Org. Chem.* **1990**, *55*, 3421– 3423.

⁽¹⁴⁾ Ishibashi, M.; Sato, M.; Kobayashi, J. J. Org. Chem. **1993**, 58, 6928–6929.

^{(15) (}a) Kobayashi, J.; Takahashi, M.; Ishibashi, M. *J. Chem. Soc., Chem. Commun.* **1995**, 1639–1640. (b) Ishibashi, M.; Takahashi, M.; Kobayashi, J. *Tetrahedron* **1997**, *23*, 7827–7832.

⁽¹⁶⁾ Sato, M.; Shimbo, K.; Tsuda, M.; Kobayashi, J. *Tetrahedron Lett.*, in press.

⁽¹⁷⁾ Kishi, K.; Yazawa, K.; Takahashi, K.; Mikami, Y.; Arai, T. J. Antibiot. **1984**, 37, 874–852.

7.0 Hz, H₃-22), 1.15 \sim 1.55 (12 H), 1.77 (2H, m, H₂-9), 2.17 (1H, dd, 10.3 and 13.5 Hz, H-15), 2.13 (1H, m, H-8), 2.33 (1H, m, H-15), 2.34 (2H, m, H₂-17), 2.40 (1H, brd, J = 14.2 Hz, H-11), 2.45 (1H, m, H-2), 2.51 (1H, m, H-14), 2.59 (1H, dd, J = 9.2 and 14.2 Hz, H-11), 3.56 (3H, s, OCH₃), 3.91 (1H, m, H-7), 4.58 (1H, H-10), 4.86 (1H, s, H-25), 4.92 (1H, s, H-25), 5.12 (1H, brs, H-13), 5.18 (1H, m, H-18), 7.42 (3H, m), and 7.61 (2H, m); FABMS *m*/*z* 639 (M + H)⁺; HRFABMS *m*/*z* 639.3502 [calcd for C₃₅H₄₉O₇F₃ (M + H)⁺, 639.3508].

Oxidative Degradation of Amphidinolide T (1). Amphidinolide T (1, 0.75 mg) was dissolved in THF (50 μ L) and treated with LiAlH₄ (1.5 mg) at room temperature for 1 h. The reaction mixture was partitioned between EtOAc (200 μ L imes3) and 1 M phosphate buffer (100 μ L). The organic phase was evaporated in vacuo to afford a crude residue. To a solution of the residue in THF/1 M phosphate buffer (1:1, 50 μ L) was added NaIO₄ (1.0 mg), and the mixture was stirred at room temperature for 30 min. After evaporation, the reaction mixture was extracted with EtOAc (200 μ L), and the extract was evaporated in vacuo. To a solution of the residue in EtOH (50 μ L) was added NaBH₄ (0.43 mg) at 0 °C, and stirring was continued for 30 min. The mixture was evaporated and then partitioned between EtOAc (200 μ L \times 3) and 1 M phosphate buffer (100 μ L). The organic phase was evaporated, and the residue was dissolved in 0.1% DMAP solution in CH₂Cl₂ (50 μ L). To the mixture were added Et₃N (2 μ L) and (R)-(-)-MTPACl (1 μ L), and stirring was continued at room temperature for 2 h. After addition of N,N-dimethyl-1,3-propanediamine (3 μ L), the solvent was evaporated in vacuo. The residue was subjected to silica gel column chromatography (hexane/ EtOAc, 8:1) and then C₁₈ HPLC (Wakosil-II 5C18 RS, Wako Pure Chemical Ind., Ltd., 4.6 mm \times 250 mm; eluent CH₃CN/ H₂O, 90:10; flow rate, 1.0 mL/min; UV detection at 230 nm) to afford compounds **3a** (0.2 mg, $t_{\rm R}$ 16.0 min) and **4a** (0.15 mg, $t_{\rm R}$ 13.6 min). **3a**: ¹H NMR (CDCl₃) δ 0.86 (3H, d, J = 7.0 Hz), 0.91 (3H, d, J = 6.7 Hz), 1.1-1.45 (8H, m), 1.69 (2H, m), 1.78-1.93 (3H, m), 2.19 (1H, m), 3.54 (6H, s), 3.79 (1H, m), 4.05 (1H, m), 4.06 (1H, dd, J = 6.7 and 10.7 Hz), 4.23 (1H, dd, J = 5.6 and 10.7 Hz), 4.41 (2H, t, J = 6.9 Hz), 7.35-4.43 (6H, m), and 7.48-7.54 (4H, m); FABMS m/z 699 (M + Na)+; HR-FABMS m/z 699.2720 [calcd for $C_{34}H_{42}O_6F_6Na$ (M + Na)⁺,

699.2732]. **4a**: ¹H NMR (CDCl₃) δ 0.88 (3H, d, J = 6.3 Hz), 0.90 (3H, t, J = 7.5 Hz), 1.30 (1H, m), 1.37 (1H, m), 1.56 (1H, m), 1.62 (1H, m), 1.84 (1H, m), 2.00 (1H, m), 2.02 (1H, m), 2.17 (1H, dd, J = 6.0 and 14.2 Hz), 2.28 (1H, dd, J = 7.6 and 14.2 Hz), 3.52 (3H, s), 3.54 (3H, s), 4.09 (1H, dd, J = 5.8 and 10.2 Hz), 4.12 (1H, dd, J = 4.3 and 10.2 Hz), 4.68 (1H, s), 4.75 (1H, s), 5.20 (1H, m), 7.35–4.43 (6H, m), and 7.48–7.54 (4H, m); FABMS m/z 641 (M + Na)⁺; HRFABMS m/z 641.2308 [calcd for C₃₁H₃₆O₆F₆Na (M + Na)⁺, 641.2314].

Compounds **3b** (0.18 mg, $t_{\rm R}$ 16.4 min) and **4b** (0.12 mg, $t_{\rm R}$ 13.0 min) were obtained from amphidinolide T (1, 0.7 mg) by the same procedure using (S)-(+)-MTPACl as described above. **3b**: ¹H NMR (CDCl₃) δ 0.86 (3H, d, J = 7.0 Hz), 0.91 (3H, d, J = 6.8 Hz), 1.1–1.45 (8H, m), 1.69 (2H, m), 1.76–1.91 (3H, m), 2.19 (1H, m), 3.52 (6H, s), 3.79 (1H, m), 4.05 (1H, m), 4.15 (2H, m), 4.39 (1H, m), 4.44 (1H, m), 7.35-4.43 (6H, m), and 7.48-7.54 (4H, m); FABMS m/z 699 (M + Na)+; HRFABMS m/z 699.2728 [calcd for C₃₄H₄₂O₆F₆Na (M + Na)⁺, 699.2732]. **4b**: ¹H NMR (CDCl₃) δ 0.83 (3H, t, J = 7.3 Hz), 0.90 (3H, d, J = 6.3 Hz), 1.17 (1H, m), 1.25 (1H, m), 1.52 (1H, m), 1.56 (1H, m), 1.92 (1H, m), 2.08 (1H, m), 2.09 (1H, m), 2.25 (1H, dd, J = 5.5 and 14.3 Hz), 2.38 (1H, dd, J = 7.6 and 14.3 Hz), 3.52 (3H, s), 3.54 (3H, s), 4.03 (1H, dd, J = 6.0 and 10.6 Hz), 4.26 (1H, dd, J = 4.8 and 10.6 Hz), 4.83 (1H, s), 4.87 (1H, s), 5.22 (1H, m), 7.35-4.43 (6H, m), and 7.48-7.54 (4H, m); FABMS *m*/*z* 641 (M + Na)⁺; HRFABMS *m*/*z* 641.2308 [calcd for $C_{31}H_{36}O_6F_6Na$ (M + Na)⁺, 641.2314].

Acknowledgment. We thank Prof. T. Yamasu, University of the Ryukyus, and Dr. M. Ishibashi for help with dinoflagellate collection. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

Supporting Information Available: NMR spectra of **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO991393R